elbassair.net

السنة الثالثة تسييرواقتصاد المدة:ساعتان

السنة الدراسية: 2022_2021 ثانوية الشهداء السبعة بوعيفل

فرض الفصل الثاني في مادة الرباضيات

الموضوع الأول

التمرين الأول: عين الاقتراح الصحيح الوحيد من بين الاقتراحات الثلاثة، في كل حالة من الحالات الآتية مع التعليل:

الدالة الأصلية على المجال] $(x) = \frac{3}{(x-2)^4}$ المعرفة ب $f(x) = \frac{3}{(x-2)^4}$ و التي تحقق 2 = $f(x) = \frac{3}{(x-2)^4}$ هي:

$$F(x) = \frac{-1}{(x-2)^3} + 3 \quad -(z) \qquad F(x) = \frac{x^3 - 6x^2 + 12x - 9}{(x-2)^3} \quad -(z) \qquad F(x) = \frac{-1}{(x-2)^3} \quad -(z) = \frac{-1}{(x-$$

المساحة بوحدة المساحة للحيز تحت المنحنى الممثل للدالة f و المحصور بين المستقيمين ذو المعادلتين: x=0 $\frac{-7}{8}$ -(ب $\frac{7}{8}$ -(أ $\frac{7}{8}$ جـ) x=1**o -(**\varepsilon

القيمة المتوسطة على [-2;3] للدالة g المعرفة ب: $(2x^2+1)^2$ هي:

$$0 - (z) \qquad \frac{63}{5} - (z) \qquad \frac{613}{6} - (z)$$

. $\left(O;\vec{i};\vec{j}\right)$ ما الدالة المعرفة على \mathbb{R} ب \mathbb{R} بالدالة المعرفة على $h\left(x\right)=\frac{x^3-1}{\left(x^2+1\right)^3}$ بالدالة المعرفة على $h\left(x\right)=\frac{x^3-1}{\left(x^2+1\right)^3}$

$$h'(x) = \frac{3x^4 + 3x^2 + 6x}{(x^2 + 1)^4} - (\underbrace{-(x^3 + x - 2)}_{$$

. هي: (C_h) للمنحنى المنحنى ((T_h) عند النقطة ذات الفاصلة ((T_h)

$$y = -1$$
 -(ج $y = -x + 1$ -(ب $y = x$ (أ يقطع محور الفواصل في: (C_h) 3

ب)- نقطة وحيدة ج)- و لا نقطة أ)- نقطتين

التمرين الثاني:

$$f(x) = \frac{(x-2)^2}{x^2-1}$$
 كما يلي: $\mathbb{R} - \{-1;1\}$ على المعرفة على يعتبر الدالة $f(x) = \frac{(x-2)^2}{x^2-1}$

. $(O;\vec{i};\vec{j})$ تمثيلها البياني في المستوي المنسوب الى معلم متعامد و متجانس (C_f)

1) أحسب نهايات الدالة f عند الأطراف المفتوحة من مجموعة التعريف . فسر النتيجة بيانيا؟ . 2) أدرس اتجاه تغير الدالة f على f على f على f أدرس اتجاه تغير الدالة f على f على f أدرس التجاه تغير الدالة f على f على أدرس التجاه تغير الدالة أدرس التجاه تغير التجاه التحاه تغير التجاه التحاه تغير التجاه التحاه التحاه تغير التجاه التحاه التحاه

. $A\left(\frac{5}{4};1\right)$ النسبي لـ (C_f) بالنسبة للمستقيم ذو المعادلة y=1 ثم تحقق أن نقطة تقاطعهما (C_f

عين احداثيات نقاط تقاطع (C_f) مع حاملي محوري الإحداثيات.

 (C_f) المنحنى النقطة المماس المنحنى النقطة النقطة ((D_f) عند النقطة

 (C_f) و (D) انشئ (D)

انتهى الموضوع الأول

elhassair.net

الموضوع الثاني:

التمرين الأول: عين الاقتراح الصحيح الوحيد من بين الاقتراحات الثلاثة، في كل حالة من الحالات الآتية مع التعليل:

$$+\infty$$
 -(ε
$$0 -(\div) \qquad \lim_{x \to +\infty} \left(\frac{x+7}{(x+1)^2} \right) = \dots$$

.0 -(ح
$$\frac{-1}{3}$$
 -(ب $\frac{1}{3}$ -(أ $\frac{1}{3}$ -() $\frac{1}{3}$ -() $\frac{1}{3}$ -(أ $\frac{1}{3}$ -() $\frac{1}{$

ي:
$$f(x) = \frac{-2}{(x+1)^2}$$
 الدالة الأصلية على المجال $[-1;+\infty]$ للدالة $f(x) = \frac{-2}{(x+1)^2}$ الدالة الأصلية على المجال $[-1;+\infty]$

$$F(x) = \frac{2}{x+1} \quad -(z) \qquad \qquad F(x) = \frac{-x+1}{x+1} \quad -(x) = \frac{-2}{(x+1)^2} \quad -(x) = \frac{2}{(x+1)^2} \quad -(x) = \frac{-2}{(x+1)^2} \quad -(x) = \frac{-2}{(x+1)^2} \quad -(x$$

المساحة بوحدة المساحة للحيز تحت المنحنى الممثل للدالة f و المحصور بين المستقيمين ذو المعادلتين: f المساحة بوحدة المساحة للحيز تحت المنحنى الممثل للدالة f و المحصور بين المستقيمين ذو المعادلتين: f المساحة بوحدة المساحة للحيز تحت المنحنى الممثل للدالة f و المحصور بين المستقيمين ذو المعادلتين: f المساحة بوحدة المساحة للحيز تحت المنحنى الممثل للدالة f و المحصور بين المستقيمين ذو المعادلتين: ج)- 4

القيمة المتوسطة على [-1;2] للدالة g المعرفة ب: [-1;2] هي:

$$0 - (z) \qquad \frac{-521}{5} - (z) \qquad \frac{521}{5} - (z)$$

هي: h الدالة المعرفة على \mathbb{R} بـ: $\frac{x^2-1}{(x^2+1)^3}$ الدالة المشتقة للدالة h

$$h'(x) = \frac{4x^3 + 8x}{(x^2 + 1)^4} - (z \qquad h'(x) = \frac{4x(x^2 - 2)}{(x^2 + 1)^4} - (x) = \frac{-4x(x^2 - 2)}{(x^2 + 1)^4} - (x)$$

التمرين الثانى: $g(x) = 2x^3 - 3x^2 - 1$ نعتبر الدالة العددية $g(x) = 2x^3 - 3x^2 - 1$ كما يلي: $g(x) = 2x^3 - 3x^2 - 1$ و ليكن (C_{g}) تمثيلها البياني في المستوي المنسوب الى معلم متعامد و متجانس و يكن المياني في المستوي المنسوب الى تمثيلها البياني في المستوي المستوي المنسوب المياني في المستوي المس

رس اتجاه تغیر الدالة g و شكل جدول تغیر اتها.

. 1,7 و بين أن المعادلة g(x)=0 تقبل حلا وحيدا α محصور بين 1,6 و 1,7

 \mathbb{R} استنتج حسب قیم x إشارة g(x) على المجال x

بين أن (C_{g}) يقبل نقطة انعطاف، ثم عينها.

$$f(x) = \frac{1-x}{x^3+1}$$
 نعتبر الدالة f المعرفة على $\mathbb{R} - \{-1\}$ كما يلي:

. $(O;\vec{i};\vec{j})$ تمثيلها البياني في المستوي المنسوب الى معلم متعامد و متجانس (C_f).

$$(x) = \frac{g(x)}{(x^3+1)^2}$$
 : $\mathbb{R} - \{-1\}$ بين أنه من أجل كل عدد حقيقي x من $(x) = \frac{g(x)}{(x^3+1)^2}$

2) استنتج اتجاه تغیر الدالة f ، ثم شکل جدول تغیر اتها.

. (C_f) عند النقطة ذات الفاصلة (D) المنحنى المنطقة ذات الفاصلة (D)

(D) تحقق أن:
$$\frac{(x-1)x^3}{(x+1)(x^2-x+1)}$$
 ، ثم استنتج الوضع النسبي للمنحنى و بالنسبة للمماس (D) بالنسبة المماس (D) تحقق أن:

عين نقاط تقاطع (C_t) مع حاملي محوري الإحداثيات.

 $(f(\alpha) \approx -1.12$ نشی (C_f) و (D) أنشی (D) أنشی

استاذة المادة: بن صافية

مع تمنياتي لكم بالتوفيق و النجاح